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Abstract

We introduce a ranking of multidimensional alternatives, including un-
certain prospects as a particular case, when these objects can be given a
matrix form. This ranking is separable in terms of rows and columns, and
continuous and monotonic in the basic quantities. Owing to the theory
of additive separability developed here, we derive very precise numerical
representations over a large class of domains (i.e., typically not of the
Cartesian product form). We apply these representation to (1) streams of
commodity baskets through time, (2) uncertain social prospects, (3) un-
certain individual prospects. Concerning (1), we propose a finite horizon
variant of Koopmans’s (1960) axiomatization of infinite discounted util-
ity sums. The main results concern (2). We push the classic comparison
between the ex ante and ex post social welfare criteria one step further
by avoiding any expected utility assumptions, and as a consequence ob-
tain what appears to be the strongest existing form of Harsanyi’s (1955)
Aggregation Theorem. Concerning (3), we derive a subjective probability
for Anscombe and Aumann’s (1963) finite case by merely assuming that
there are two epistemically independent sources of uncertainty.

1 Introduction and overview

Consider the intertemporal problem in consumer theory, i.e., to define a prefer-
ence over intertemporal consumption plans ranging over several goods. A con-
venient way to tackle this problem is to postulate two sets of more elementary
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preferences, the first set comprising of preferences defined on time sequences of
consumption for each given good, and the second set comprising of preferences
defined on goods baskets for each given time period. Then, a preference over
consumption plans can be defined by the condition that it varies ceteris paribus
in the same direction as each elementary preference in either set.

Now suppose that a social observer wants to compare social prospects, which
allocate either money or utility across both individuals and states of the world.
This can be dealt with as before, by first supposing two sets of elementary
preferences, and then requiring that the overall preference agree ceteris paribus
with them. Here, one set is obtained by fixing the individual and letting the
states vary, and the other, by fixing the state and letting the individuals vary.
That is, the observer judges the social prospects both from all possible ex ante
individual perspectives, and from all possible ex post social perspectives, with
his final judgment taking each such judgment separately into account.

Changing the model again, suppose that an individual decision-maker has
to compare state-contingent prospects, where each state of nature encapsulates
information from two epistemically independent1 sources of uncertainty. Then
the same technique as before leads one to introduce two sets of conditional
preferences over the consequences, and have the preference over prospects reflect
any of these conditionals ceteris paribus.

Each time, the objects are structured in terms of two attributes, and an
overall preference is obtained by assuming that it is separable in terms of the
values taken by either attribute. Separability has become a familiar theme in
economics at large, but we aim at exploring it further, both abstractly and in
terms of applications. Our main interest lies with social preference under un-
certainty, as we will show - following some unpublished work by the first author
(Blackorby et al., 2004) - that advanced separability techniques deliver surpris-
ingly powerful results in this area. However, the theory needed there proves to
be so general as to cover many other cases at once, and it is a secondary goal of
this paper to bring out this rich potential. Thus, we review the intertemporal
consumer preference problem, and introduce the mixed uncertainty problem,
using the same toolkit to gain insight on them. The three cases have to do
with defining preferences of some kind, but we could have investigated some
non-preferential rankings at little extra cost.2

Before proceeding, we briefly sketch the main technical ideas of the paper.
In general, the alternatives take the form of matrices of real numbers, with the
indices of rows and columns representing two independent attributes of these
objects, such as commodities and moments in time, individuals and states of
nature, or two independent sources of uncertainty.3

1This means that neither source of uncertainty provides any information about the other
source.

2An earlier version of the paper had one such example. It constructed an index of economic
integration based on input-output matrices.

3If the attributes exhibit some kind of logical or physical interdependency, then the matrix
form is prima facie inadequate, but a redescription can sometimes make them independent.
Multiattribute decision theory has considered this redescription strategy; see, e.g., Keeney
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If there are more than two attributes, one could group them within the
row indices or within the column indices, so as to apply the matrix form. For
example, in an application to intertemporal social preferences with uncertainty,
each column may represent both a particular state of nature and a particular
moment in time. However, this move is sometimes ill-judged, because it locates
part of the aggregation process at the definitional level instead of the axiomatic
one, and it precludes some pertinent representations from being derived. A more
relevant alternative would be to replace matrices by higher-dimensional arrays.
Our techniques easily generalize to this setting, but this will not be pursued
here.

We assume that objects are ranked as follows. Each row index is associated
with a ranking of those rows which are feasible given that index, and likewise,
each column index is associated with a ranking of the feasible columns for that
index. The overall ranking of feasible matrices relates to these rankings mono-
tonically, i.e., if two matrices differ only in one row, and one matrix has this row
ranked above the corresponding row of the other, then the first matrix is higher
than the second in the overall ranking, and similarly with columns instead of
rows. These are the separability conditions illustrated above. We need another
crucial condition, to the effect that two matrices differing in only one coordinate
(i.e., row-column pair) are ranked as the numbers in that coordinate. This is a
monotonicity assumption, saying in effect that the numbers measure something
valuable.

These three axioms —called Row Preferences, Column Preferences and Co-
ordinate Monotonicity —often become familiar once the application context is
fixed. We also impose Continuity on the overall ranking. Under domain assump-
tions to be spelled out below, this axiom set delivers a representation theorem
of a classic format: the overall ranking of matrices can be represented by a fully
additively separable value function, i.e., a sum of value functions defined for each
coordinate (Proposition 1 in Section 2). This functional form was axiomatized
by Debreu (1960) and Gorman (1968b), and it has since then pervaded microe-
conomic theory (see Blackorby, Primont, and Russell, 1978) and multiattribute
decision theory (see Fishburn, 1970, Keeney and Raiffa, 1976, Wakker, 1989).
However, it is not obtained here in the same way as in these works, and we
dispense with the strong assumption, made both by Debreu and Gorman, that
the set of alternatives is a full Cartesian product. To generalize this assumption,
we rely on topological concepts that have been introduced first in mathematical
decision theory.4 Our aim here is to take account of those feasibility constraints
which our applications will typically involve.

Another important connection is with the early microeconomic literature
on consistent aggregation; see Green (1964), and van Daal and Merkies (1984,
1988) for surveys; the pioneering result is due to Nataf (1948). Once translated
into numerical representations, our four axioms are seen to entail consistent
aggregation, which is known from this literature to entail additive separability.

(1981).
4See the technical references in Section 2. Our paper belongs to the “topological” branch

of separability theory, rather than its “algebraic” branch.
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However, our theory goes farther by dispensing with two unpalatable assump-
tions of these earlier works: first, the Cartesian product structure, and second,
the differentiability of numerical representations. The latter assumption pre-
cludes one from stating a proper axiomatic basis since it has no counterpart at
the preference level.

As it is reexpresses the analysis of the three opening examples, Proposition
1 shows that, for all its naturalness, this analysis is constraining and perhaps
undesirable. Depending on how the additively separable form is assessed, it
constitutes either a characterization theorem or an impossibility theorem. The
same ambivalence underlies the main results of the paper, to be described now.

These results require the overall ranking to be invariant between rows (In-
variant Row Preferences), or between columns (Invariant Column Preferences), or
both at the same time. Adding relevant domain assumptions to these new pref-
erence axioms, Theorem 1 strengthens the additively separable representation
of Proposition 1 into a weighted sum of value functions, where the value func-
tions may differ only across rows, or only among columns. The case where both
invariance properties hold is covered by a separate result, Corollary 1.

In terms of applications, Theorem 1 is first put to use on intertemporal
preference. By adding relevant conditions in the style of Koopmans (1960),
Proposition 2 axiomatizes the classic discounted utility model. While Koop-
mans’s original axioms only apply to infinite consumption streams, our variant
is for finite ones.

Second and more importantly, we apply Theorem 1 to uncertain social pref-
erence. As is well-known, when social alternatives are uncertain, social welfare
criteria can have two forms, either ex ante or ex post, and the question arises
whether they can be made compatible. This has been debated in welfare eco-
nomics by Hammond (1981), in moral philosophy by Broome (1991), and in
axiomatic decision theory by Mongin (1995). The widespread answer is that
the two criteria become compatible only if the individuals’ and the social ob-
server’s ex ante preferences obey stringent restrictions. However, this conclusion
depends on the prior assumption that the individuals and the social observer
satisfy the axioms of expected utility theory, and little is known on the compat-
ibility problem when this major assumption is relaxed. Because the decision-
theoretic properties encapsulated in our axioms are so weak - merely statewise
dominance and state-independence - Theorem 1 shows what happens in this
case. Somewhat shockingly, the conclusion remains negative: the same strin-
gent conditions are necessary to achieve compatibility between the ex ante and
ex post normative viewpoints.

A related connection is with Harsanyi’s (1955) Aggregation Theorem, which
states that a Paretian and von Neumann-Morgenstern (vNM) aggregate of in-
dividual vNM utility functions is a weighted sum of these utility functions.
Viewed in this light, Theorem 1 generalizes Harsanyi by showing that much
weaker decision-theoretic assumptions suffice for his conclusion. In the end, an
expected utility representation turns out to be indispensable, as our theorem
deduces it at the same time as the weighted sum rule, so this is another am-
bivalent finding. On the one hand, we reinforce Harsanyi’s intriguing argument
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for utilitarianism, by starting from better assumptions, and on the other, we
establish once and for all that his argument cannot live outside of the narrow
framework of linear decision theory. From a comparison with the literature, this
appears to be the strongest form of the Aggregation Theorem to date.

Lastly, we apply Corollary 1 to derive a subjective probability from pref-
erences under mixed uncertainty. Given our finiteness assumptions, Anscombe
and Aumann (1963) provide the relevant benchmark. They have been criticized
for resorting to vNM preferences over “objective” lotteries in their derivation,
and our proposed alternative avoids this classic circularity objection entirely.
This result is the only the beginning of an analysis of subjective probability
that will be pursued elsewhere.

2 Basic framework and a preliminary result

We fix two finite sets of indices, I and J , with |I|, |J | ≥ 2, in order to represent
the relevant attributes of the objects to be ranked. These are identified with
bundles of quantities xij for all (i, j) ∈ I × J , and accordingly, we define an

alternative X to be an element of the Cartesian product RI×J . We usually
write X in matrix form, i.e., X = [xij ]

i∈I
j∈J , but sometimes also as a vector of

rows or as a vector of columns. Writing I = {1, . . . , n} and J = {1, . . . ,m},
we put X = (x1 ,x2 , . . . ,xn), where for each i ∈ I, xi := [xij ]j∈J ∈ RJ is the
ith row vector of X. We also write X = (x

1
, . . . ,x

m
), where for each j ∈ J ,

xj := [xij ]
i∈I ∈ RI is the jth column vector.

We assume that feasibility constraints restrict the set of alternatives. For a
number of reasons, it may be impossible to realize all and every distribution
of quantities through time periods, individuals, and states of the world. E.g.,
future consumption of a durable depends on how much it is used now, social
benefits to some individuals depend on much the others earn, crops depends on
the state of weather. To cover many cases by a single hypothesis, we take the
set of feasible alternatives to be an open, connected subset X ⊆ RI×J . This is
in line with Segal (1992) and Chateauneuf and Wakker (1993); still in accord
with them, more topological restrictions on X will be introduced later.

We introduce a preference relation � on X rather than the whole of RI×J ,
thus departing from the common procedure in microeconomics of divorcing pref-
erences from constraints entirely. The common procedure is appropriate when
constraints only restrict the availability of objects to the individuals, and not
also their existence, since otherwise preferences would sometimes compare im-
possible objects between themselves or with possible objects, and this seems
to be nonsensical. Our applications involve borderline cases between availabil-
ity and existence. Compare elementary consumer theory, in which alternatives
are static commodity baskets and can be left unrestricted unproblematically,
with its intertemporal extension, which replaces them by consumptions plans
and should take account of inter-period complementarities. If the conceptual
difference is often overlooked, this is, we submit, on grounds of mathematical
expediency: universal domains take the form of Cartesian products, which are
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much easier to handle than restricted sets of alternatives such as the present X .
All of our axioms relate to � as a single primitive term. Throughout, we

take it to be an order (meaning a weak order, i.e., a transitive and complete
binary relation) and to satisfy the following four axioms. Define the projected
sets X i := {xi; X ∈ X}, for all i ∈ I, and Xj := {xj ; X ∈ X}, for all j ∈ J .

Continuity: The preference order � is a continous (i.e., its upper and lower
contour sets are closed subsets of X ).

Row Preferences: For all i ∈ I, there is an order �i on X i such that, for all
X,Y ∈ X , if xh = yh for all h ∈ I \ {i}, then X � Y if and only if
xi �i yi.

Column Preferences: For all j ∈ J , there is an order �j on Xj such that, for
all X,Y ∈ X , if xk = yk for all k ∈ J \ {j}, then X � Y if and only if
xj �j yj .

Coordinate Monotonicity: For all i ∈ I and j ∈ J , and all X,Y ∈ X with xhk = yhk
for all (h, k) ∈ I × J \ {(i, j)}, X � Y if and only if xij ≥ yij .

The last axiom is a consequence of either of the following conditions:

Row Monotonicity: For all i ∈ I and j ∈ J , and all x,y ∈ X i, with xk = yk for
all k ∈ J \ {j}, x �i y if and only if xj ≥ yj .

Column Monotonicity: For all j ∈ J and i ∈ I, and all x,y ∈ Xj , with xh = yh

for all h ∈ I \ {i}, x �j y if and only if xi ≥ yi.

The following lemma states this precisely, and also identifies a convenient
case in which an equivalence holds.

Lemma 1 Let X ⊆ RI×J be an open set, and let � be an order on X that has
Column Preferences and Row Preferences. If � satisfies either Row Monotonicity
or Column Monotonicity, then � satisfies Coordinate Monotonicity. Conversely,
if X is convex, then Coordinate Monotonicity is equivalent to each of Row Mono-
tonicity and Column Monotonicity.5

Coordinate Monotonicity, Row Monotonicity and Column Monotonicity say that
the xij are amounts of some good : the more of it at (i, j), every other quantity
being the same, the more satisfied the preference.

Row Preferences and Column Preferences call for comparison with the more
familiar condition of weak separability.6 Here is how it would occur in the present
framework.

Weak Row Separability : For all i ∈ I, for all X,Y, X̃, Ỹ ∈ X such that
xi = x̃i, yi = ỹi, and for all h ∈ I \ {i}, if xh = yh and x̃h = ỹh, then
X � Y if and only if X̃ � Ỹ.

5The proofs of Lemma 1 and all other results are in the Appendix.
6In multiattribute decision theory, see Keeney and Raiffa (1976, ch. 3). In individual

decision theory, see Fishburn (1970) and Wakker (1989).
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Weak Column Separability : For all j ∈ J , for all X,Y,X′,Y′ ∈ X such
that xj = x′j , yj = y′j , and for all k ∈ J \ {j}, if xk = yk and x′k = y′k,
then X � Y if and only if X′ � Y′.

To clarify the connection, note first that Row Preferences (RP) entails Weak
Row Separability (WRS) on any domain X . For the converse, suppose that
WRS holds, and for each i ∈ I, define the following binary relation �i :

xi �i yi iff there are X,Y ∈ X
such that xh = yh for all h ∈ I \ {i}, and X � Y.

If X = RI×J , then �i satisfies RP. However, on a domain X  RI×J , �i can
fail the completeness property of an ordering, and in this case, RP is strictly
stronger than WRS. We need RP precisely to balance the unusual generality of
our domain assumption. Barring this fine logical point, it has the same signifi-
cance as WRS. This holds similarly for Column Preferences and Weak Column
Separability.

We will now briefly review the axioms in the light of our three applications.
In the intertemporal preference problem, take the sets I and J to represent
time periods and goods, respectively. Thus, with the xij measuring physical
quantities, Row Preferences gives rise to preferences over goods baskets at each
given time, and Column Preferences, to preferences over consumption streams
for each given good.

In the uncertain social preference problem, the sets I and J will represent
individuals and states of nature, respectively. We can take the xij to be physical
quantities, as in the previous case, or to be utility values, which conceptually
amounts to endorsing a welfarist form of normative economics.7 We consider the
latter interpretation because it connects better with the theoretical issues high-
lighted in the introduction. Thus, what the social preference � ranks are ex ante
social allocations viewed in utility terms, and Row Preferences corresponds to
the following Pareto conditions: (a) if all individuals are indifferent between two
social prospects, then the social preference also is; (b) if one individual strictly
prefers one prospect to the other, and all others are indifferent, then the social
preference ranks the former prospect above the latter. Statement (a) is exactly
the ex ante Pareto Indifference condition. Statement (b) is a weaker form of the
ex ante Strict Pareto condition. To get the full force of it, i.e., to cover the case
of more than one non-indifferent individual, one must apply (b) iteratively, and
this requires a rich enough domain. Ours is intentionally small, and Row Pref-
erences can only yield a local form of the ex ante Strict Pareto axiom.8 Thus,
the ex ante Pareto principle holds in a somewhat weakened way.

7In normative economics, welfarism is the claim that individual utility values capture all
the information on alternatives that may be relevant to the social evaluation.

8 That is: for any X ∈ X , there is an open neighbourhood YX ⊆ X with X ∈ YX such
that, for any Y ∈ YX with xi �i yi for all i ∈ I, and xi �i yi for some i ∈ I, it is the case
that X � Y. However, if X is convex, one can take YX = X for all X ∈ X .
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Column Preferences means that the ex ante social preference � is increas-
ing with respect to each of its ex ante preferences conditional on states. This
is statewise dominance, a virtually universal property for decisions under un-
certainty; it is satisfied not only by expected utility, but also by most current
non-expected utility models (including rank-dependent utility). Since the xij are
utility numbers, Row Monotonicity means statewise dominance for each individ-
ual order �i vis-à-vis its own conditionals. Column Monotonicity means that
in every realized state, the ex post social preference order satisfies both Pareto
Indifference and a local version of Strict Pareto. This is the ex post Pareto
principle, again in a weaker form due to the domain.

In the mixed uncertainty problem, the sets I and J correspond to the two
independent sources of uncertainty, while xij represents the utility payoff if the
uncertainty resolves to the state of nature (i, j). Row Preferences and Column
Preferences say that preferences exist conditionally on each i and conditionally
on each j, and that the preference � over prospects is increasing with respect to
each of these conditionals - an eventwise dominance property, since i and j now
count as properties of states, hence as events (they are identified with {i} × J
and I × {j} respectively).

We now move to more technical assumptions, which are essential to the
proofs. For all Y ∈ X , and all i ∈ I and j ∈ J , the (i, j)-section of X through
Y is the set {X ∈ X ; xij = yij}, an (I · J − 1)-dimensional subset of RI×J . We
say X is sectionally connected if each (i, j)-section is connected. This condition
is neither stronger nor weaker than connectedness; see the examples by Segal
(1992), Wakker (1993), and Chateauneuf and Wakker (1993), which also illus-
trate why this is an important restriction. The open set X ⊆ RI×J is connected
if and only if it is path-connected, which means that, given any two feasible
alternatives X and Y, it is possible continuously to transform X into Y by
moving along a continuous path of feasible alternatives. Sectional connected-
ness resembles path-connectedness, except that it requires one to transform X
into Y while holding constant the value of one coordinate. The set X is both
path-connected and sectionally connected if it is convex and, a fortiori, if it is
a box — i.e., X =

∏
i∈I
∏

j∈J Bij , where Bij is a real interval for all i ∈ I and
j ∈ J . (However, an open box-shaped domain would not usefully restrict the
universal domain X =RI×J .)

Finally, we say that X is �-indifference connected if, for all Y ∈ X , the
indifference set {X ∈ X ; Y ≈ X} is a connected subset of X . The above writers
have well explained why this restriction matters. Here are two cases in which it
holds.

(a) If X is an open box in RI×J , then X is �-indifference connected. (See
Appendix for proof.)

(b) Suppose X is a convex and comprehensive subset of RI×J
+ . If � is quasi-

concave, then X is �-indifference connected.9

9The set X ⊆ RI×J is comprehensive if for all X ∈ X , and all X′ ∈ RI×J , if X′ ≤ X then
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For all i ∈ I and j ∈ J , let X i
j := {xij ; X ∈ X} ⊆ R. Now to our first result.

Proposition 1 Let X ⊆ RI×J be open. Let � be an order on X that has
Row Preferences and Column Preferences, and satisfies Continuity and Coordinate
Monotonicity. Then:

(a) For all X ∈ X , there is an open neighbourhood Y ⊆ X with X ∈ Y,
and for all i ∈ I and j ∈ J , there are continuous increasing functions
uij : X i

j −→ R such that � is represented on Y by the additive function
U : Y −→ R defined by

U(Y) :=
∑
i∈I

∑
j∈J

uij(y
i
j), for all Y ∈ Y.

Furthermore, in this representation the uij are unique up to positive affine

transformations with a common multiplier.10

(b) Suppose X is also connected, sectionally connected, and �-indifference con-
nected. Then we can take Y = X in part (a).

(c) In this case, for all i ∈ I, the order �i is represented by the function
U i : X i−→ R defined by

U i(x) :=
∑
j∈J

uij(xj), for all x ∈ X i.

(d) Likewise, for all j ∈ J , the order �j is represented by the function Uj :
Xj−→ R defined by

Uj(x) :=
∑
i∈I

uij(x
i), for all x ∈ Xj.

Part (a) relies on an indirect use of Debreu (1960)’s theorem on additively
separable representations. Instead of explicitly assuming that the preference
order is totally separable, as in this classic result, we first establish total separa-
bility via the theory of overlapping separability developed in Gorman (1968b).
Then, Debreu’s theorem provides a local additively separable representation in
a box around any alternative. Part (b) consists in gluing these local representa-
tions together, via the special connectedness conditions.

X′ ∈ X . The order � is quasi-concave if all of its upper contour sets are convex.
10That is, if the functions ũij : X ij −→R are such that � is represented on Y by the function

Ũ defined by

Ũ(Y) :=
∑
i∈I

∑
j∈J

ũij(y
i
j), for all Y ∈ Y,

then there exist a > 0 and bij ∈ R such that, for all i ∈ I and j ∈ J , ũij(y
i
j) = a uij(y

i
j) + bij for

all Y ∈ Y.
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We leave it for the reader to check that consistent aggregation, in Green’s
(1964) or van Daal and Merkies’s (1984) sense, holds of the numerical func-
tions representing the orders defined here. Had we taken these representations
as primitives, and retained Nataf’s (1948) strong Cartesian product and dif-
ferentiability assumptions, we could have applied his theorem and obtained
Proposition 1(b) at once.11

In general, the functions uij are all different, and to obtain a relationship
between them is the object of the following section and its more advanced re-
sults. Our applications to uncertain social preference and mixed uncertainty
require these later results, but Proposition 1 already offers a perspective on in-
tertemporal preference, as we now discuss. In this case, uij is a utility function

for consumption of good j at time i, U i is a utility function over consumption
bundles at time i, Uj is a utility function over streams of good j, and U is a
utility function for consumption plans. There is a classical stock of arguments
for rejecting additive separability with respect to goods, and being suspicious of
it when it applies to time periods.

Jevons and Walras introduced the “equation of exchange” —today’s text-
book equality between marginal utility ratios and marginal rates of substitu-
tion —in terms of separable, and even additively separable, utility functions
for consumption goods, and they also stated their demand theory in this way.
Edgeworth pointed out that this was unnecessary for the purpose, still a mild
point, but later neo-classicals found more distressing objections. Implying as it
does that the marginal rate of substitution of a for b only depends on the quan-
tities of a and b, separability (more generally than additive separability) makes
the law of demand automatic under diminishing marginal utilities, thus wiping
out the possibility of a prevailing income effect. Moreover, separability makes it
impossible to classify consumer goods into complements and substitutes. These
critical messages were taken aboard long ago by demand theory, and it comes
to no surprise that postwar theorist Gorman expressed doubts about the very
assumptions that he was exploring mathematically.12

Additively separable representations have on the whole been more success-
ful when they concern time preferences. Ramsey may have been the first to
employ such a functional form in his saving model, and it has persisted in the
neoclassical literature on intertemporal choices of consumption, investment or
money balances. This can be explained by analytical convenience, but no doubt
also by the fact that the objections from demand theory lose their force here.
However, there are worrying specific objections, in particular that for some
goods, the quantity of today’s consumption influences the utility of tomorrow’s
consumption through habit formation.13

Given this controversial pedigree, Proposition 1 sounds like a mixed blessing.

11Though Nataf’s (1948) theorem is correct, its proof is rather obscure. The curious reader
may consult the clarifications and improvements adduced by van Daal and Merkies (1988).

12More obviously in Gorman (1968a) than in the other papers.
13This by now classic objection is discussed in detail by Browning (1991). Other problems

raised by temporal separability are discussed in the theoretical management literature (e.g.,
Keeney and Raiffa, 1976), as well as in health economics (e.g., Gold et al. 1996).
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Some might use it to axiomatize old style neo-classical economics, but many oth-
ers will rather argue by contrapositive, rejecting the strong functional forms in
the conclusion, and hence, the choice of the axioms in this case. The ambivalence
is also typical of the results in the next section.

3 The main theorem and its applications

Although too strong in one sense, the conclusion of Proposition 1 is too weak
in another, because the additively separable representation does not impose
any relation between the utility functions defined coordinatewise. This section
makes it more informative by introducing both stronger axiomatic conditions
and more structural assumptions. In the axiomatic group, we will strengthen
either Row Preferences, or Column Preferences, or both, by requiring that there
be a single preference order on rows, or a single preference order on columns, or
both. Formally, define

XJ :=
⋃
j∈J
Xj and X I :=

⋃
i∈I
X i.

We will require at least one of the following two conditions.

Invariant Row Preferences: There is an order �I on X I such that, for all i ∈ I
and any X,Y ∈ X with xh = yh for all h ∈ I \ {i}, X � Y if and only if
xi �I yi.

Invariant Column Preferences: There is an order �J on XJ such that, for all
j ∈ J and any X,Y ∈ X with xk = yk for all k ∈ J \ {j}, X � Y if and
only if xj �J yj .

Since our framework treats rows and columns symmetrically and their mean-
ing can be fixed at will, we conventionally select Invariant Column Preferences
when only one invariance condition applies.

In the group of structural conditions, we will require that there be a single
set of feasible rows, or a single set feasible columns, or both. Formally, the
domain X should satisfy at least one of the following structural conditions:

Identical Row Spaces: There exists X I ⊆ RJ such that X i = X I for all
i ∈ I.

Identical Column Spaces: There exists XJ ⊆ RI such that Xj = XJ for all
j ∈ J .

Under the first condition, there is a common projection X ∗j of all the X i, for

each j ∈ J , with the property that X I ⊆
∏

j∈J X ∗j . Under the second condition,

there is a common projection X i
∗ of all the Xj , for each i ∈ I, with the property

that XJ ⊆
∏

i∈I X
i
∗. Here are two formal cases where the conditions hold.

11



Examples. (a) If X is an open box in RI×J , then X satisfies both Identical
Row Spaces and Identical Column Spaces.

(b) Suppose that, for all y ∈ XJ , there exists X ∈ X such that xj = y for
all j ∈ J . Then X satisfies Identical Column Spaces.

Invariant Row Preferences and Invariant Column Preferences are so formulated
that no logical implication holds between them and Identical Row Spaces and
Identical Column Spaces. However, the two sets of restrictions are often accept-
able or rejectable together. In the intertemporal preference problem, Invariant
Row Preferences and Identical Row Spaces are very stringent, while Invariant
Column Preferences and Identical Column Spaces may or may not hold depend-
ing on the case. The former says that one time ranks commodity baskets like
another when they are available at both times; this excludes habit formation.
The latter asserts that exactly the same baskets are available at each time; this
excludes exogenous changes in the feasible set over time, such as those brought
about by technological innovation or climate change, but emphatically, it does
not exclude technical interdependencies between periods.14 Consumer theory
often makes these assumptions.

In the uncertain social preference problem, with xij representing utility, In-
variant Row Preferences becomes the implausible claim that all individuals have
the same preferences. But Identical Row Spaces is not so easy to discard. It
says that the set of utility vectors is common to all individuals, which makes
sense if some interpersonal utility comparisons have already taken place. Mean-
while, Invariant Column Preferences says that ex post social preferences are state-
independent, while Identical Column Spaces says that the same social outcomes
are feasible in each state. These two state-independence assumptions are made
by Savage (1972) and Anscombe and Aumann (1963) when they derive a sub-
jective probability from preferences under uncertainty, and they have prevailed
in the theoretical discussion of ex ante versus ex post social welfare criteria that
concerns us. Note that this axiom still allows the individuals to have state-
dependent preferences; this is explained below.

Now to our main result. Given a finite set K and a vector p ∈ RK , we say
that p is a strictly positive weight vector on K if pk > 0 for all k ∈ K, and∑

k∈K pk = 1. We reserve the expression of probability vector for those cases
in which elements of K represent states of nature. The set of strictly positive
weight vectors on K is denoted by ∆K .

Theorem 1 Suppose that X ⊆ RI×J is open, connected, sectionally connected,
�-indifference connected, and satisfies Identical Column Spaces. Then � satis-
fies Continuity, Coordinate Monotonicity, Row Preferences and Invariant Column
Preferences if and only if:

(a) For all i ∈ I, there is an increasing, continuous function ui : X i
∗−→R, such

that the order �
J

is represented by the function WJ : XJ−→R defined by

WJ(x) :=
∑
i∈I

ui(xi), for all x ∈ XJ . (1)

14This would rather be excluded by assuming X to be the Cartesian product
∏
j∈J Xj .
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(b) There is a strictly positive weight vector p ∈ ∆J , such that for all i ∈ I,
the order �i is represented by the function U i

p : X i −→R yielding the

p-weighted value of ui. That is:

U i
p(x) :=

∑
j∈J

pj u
i(xj), for all x ∈ X i. (2)

(c) The order � is represented by the function W : X−→R which computes the
p-weighted value of the function WJ from part (a). That is:

W (X) :=
∑
j∈J

pj WJ(xj) =
∑
j∈J

∑
i∈I

pj u
i(xij) =

∑
i∈I

U i
p(xi), for all X ∈ X .

(3)

(d) In this representation, the weight vector p is unique, and the functions ui

are unique up to positive affine transformations with a common multiplier.

Application to intertemporal preferences. Suppose J := {1, 2, . . . , t} in-
dexes a set of t consecutive time periods. Then, Theorem 1 says that time j does
not influence the shape of the utility functions ui defined for each commodity
i, its role being channelled through the weights pj . To turn these weights into
discount factors, more axioms are needed. Essentially, we adapt those of Koop-
mans (1960), which were defined for infinite consumption streams, whereas we
have a finite horizon t here.15

For any X ∈ X , let XL ∈ R|I|×(t−1) be the submatrix comprised of the
leftmost (t− 1) rows of X, and let XR ∈ R|I|×(t−1) be the submatrix comprised
of the rightmost (t − 1) rows of X. Let XL := {XL; X ∈ X} and XR := {XR;
X ∈ X}; these are both open subsets of R|I|×(t−1). It follows from Theorem 1
that � defines orders �L and �R on XL and XR such that for all X,Y ∈ X :

• If xt = yt, then X � Y iff XL �L YL.

• If x1 = y1, then X � Y iff XR �R YR.

We require that these auxiliary orders coincide. This is Koopmans’s stationarity
condition, but adapted to a finite set of time periods.

Stationarity. �L is identical with �R on XL ∩ XR.

We also impose a version of Koopmans’s impatience condition. It says that
a commodity bundle becomes preferable if it consumed at an earlier date than
the current one. For all j ∈ {1, 2, . . . , t−1} and all X ∈ X , let σj(X) be the
matrix resulting from interchanging columns j and j + 1 in X.

Impatience for j. For all X ∈ X , X � σj(X) ⇐⇒ xj �J xj+1.

15For a clarification and extension of Koopmans’s initial work, see Bleichrodt et al. (2008).
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For our purposes, this condition will have enough bite if there exists X ∈ X
such that σj(X) ∈ X and the j and j + 1 columns of X are non-indifferent for
�J ; in this case, we say that time j is activated. Given our domain assumption
and earlier axioms, this is a light requirement.16 With this added material, we
can now turn the weighted sum W (X) of Theorem 1 into a discounted sum.

Proposition 2 Suppose the hypotheses of Theorem 1 hold.

(a) Suppose that for all j ∈ {1, . . . , t−1}, Impatience for j holds and time j is
activated. Then, pj > pj+1 for all j ∈ {1, . . . , t−1}.

(b) Suppose that for some j ∈ {1, . . . , t−1}, Impatience for j holds and j is
activated, and suppose also that Stationarity holds with XL∩ XR 6= ∅.
Then, there exists some δ ∈ (0, 1) such that pj = δj−1 · p1 for all j ∈ J .

Application to uncertain social preferences. The functions U i
p and W

of Theorem 1(b,c) represent the individuals’ and the social observer’s ex ante
utility functions. If p is regarded as a probability vector, then these functions are
shown to be of the expected utility type. This seems to be a strong conclusion,
given the modicum of decision theory we assumed at the start. We required
only two things: first, that both the individuals and social observer satisfy
statewise dominance, and second, that the social observer has Paretian and
state-independent preferences. Theorem 1(b) does not impose state-independent
preferences on the individuals, because the xij are taken to be preexisting utility
numbers which may very well come from some state-dependent utility functions,
exogenous to our modelling.

Theorem 1(a,c) gives another description of the social observer’s preferences,
this time in terms of social welfare functions. The ex post welfare function WJ

and the ex ante welfare function W are sums of the corresponding individual
utility functions, i.e., have the mathematical form of a weighted utilitarian rule.
This strongly cardinal conclusion seems surprising in view of the purely ordinal
form of the axioms, but the separability conditions have contributed their fa-
miliar role in the inference step.17 Whether the WJ and W representations bear
more than a formal analogy with classical utilitarianism is a complex question
that we do not discuss here.

Finally, Theorem 1(d) confers uniqueness to the functional representations,
under the usual proviso that the mathematical pattern in which they appear
must be respected.18 Without such uniqueness, the representations would have
no significance; in particular, it would not be sensible to view p as being any-
body’s probability.

16For example, it is satisfied if there is X ∈ X with xj = xj+1. (For some ε > 0 , X
contains X(ε), which is X except that in its j-th column x

(ε)
j , ε is added to each component

of xj . From Column Monotonicity, x
(ε)
j �J xj+1.)

17The step from ordinality to cardinality through separability is well documented in Fish-
burn (1970) and Wakker (1989).

18Non-affine monotonic transforms of the ui would represent the �i equally well, but destroy
the expected utility form of the representations in Theorem 1(b,c).
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With these interpretations at hand, Theorem 1 has a bearing on the classic
problem in welfare economics of comparing ex ante with ex post criteria. By
definition, the ex ante social welfare criterion applies the ex ante Pareto princi-
ple to the individuals’ ex ante preferences, while assuming that these individual
preferences conform to some specific decision theory (typically subjective ex-
pected utility theory). Meanwhile, the ex post social welfare criterion puts the
decision-theoretic restrictions on the social preference order, while applying the
ex post Pareto principle to the individuals’ ex post preferences. As Section 2
explained, the four components just listed correspond to Row Preferences, Row
Monotonicity, Column Monotonicity and Column Preferences, respectively, so the
assumptions of the theorem characterize a social welfare criterion that would
be both ex ante and ex post.19 The conclusion shows that this hypothesized
compatibility can be achieved only if

(1) the individuals and the observer are all expected utility maximizers, and

(2) they compute their expected utilities by using the same subjective prob-
abilities.

Hammond’s (1981) welfare economics paper is a good source for both the
compatibility problem and the answer that conclusion (2) is necessary for its so-
lution.20 When investigating consistent ways of aggregating Savage preferences,
Mongin (1995) implicitly raised the compatibility problem. His axiomatic treat-
ment enlarges the set of possibilities somewhat. The ex ante and ex post social
criteria can be compatible when either weaker Pareto conditions than the full
Pareto principle apply, or the individuals’ utility functions are affinely depen-
dent. These two possibilities are excluded by Row Preferences and the open
domain assumption, respectively, so it comes as no surprise that only (2) sur-
vives in Theorem 1. The main news is conclusion (1). The above papers (and
others as well) assumed that both the individuals and the social observer sat-
isfied the axioms of subjective expected utility, whereas we now prove this as
a component part of our representation. To appreciate the step forward, take
probabilistically sophisticated individuals, i.e., individuals who have well-defined
subjective probabilities despite not satisfying subjective expected utility, but
some generalization of it. They would satisfy our weak decision-theoretic condi-
tions; thus, if the observer satisfied both the ex ante and ex post criteria, they
would inexorably turn into subjective expected utility maximizers!

It is unclear whether conclusion (2) represents an impossibility theorem
or only a severe, though implementable restriction. Among the interpreters,
Broome (1991) seems to take the latter view, whereas Mongin and d’Aspremont
(1998) favour the former. The answer depends on one’s underlying philosophy

19Observe that the ex ante and ex post Pareto principles are logically independent in our
framework. This is not the case in the frameworks of the next paragraph, which embody
subjective expected utility assumptions. There, the ex post principle automatically follows
from applying the ex ante principle to constant prospects.

20Hammond acknowledges Starr’s (1973) paper on allocation under uncertainty as being an
earlier source.
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of probability, and on the further issue of when probabilities are computed: is
it at the completely ex ante stage, or rather at some interim stage? On one
interpretation, probabilities are subjective in the sense promoted by Savage, and
moreover, they are pure priors, i.e., embody no outside information at all; this
would make their identity across individuals rather unlikely. On another inter-
pretation, they are still subjective in the same sense, but are imperfect priors,
thus in effect posteriors, because they embody some outside information; this
would make their identity across individuals less unlikely. (Some will argue that
a pure prior is a fiction and that this is the only appropriate alternative of the
two.) Finally, probabilities could be objective in one of the senses that philoso-
phers of probability have argued for.21 This last interpretation would make (2)
unproblematic, but it does not fit in with the present frame of analysis, which,
like Savage’s, take probabilities to reflect subjective preferences.

Several proposals have been made to escape from (2) when it is viewed as
an impossibility. The pure ex ante solution and pure ex post solution each keep
only one of the two social welfare criteria. Indeed, the ex post solution is the
common way out in welfare economics.22 However, quite a few respondents have
suggested that compatibility would result from weakening the decision-theoretic
basis, and Theorem 1 has the clearest bearing when it comes to this group. It
definitely wrecks the hopes set in replacing the sure-thing principle by one of
its recent generalizations, but leaves open a less obvious possibility, which is to
let the social observer have state-dependent preferences. That conciliation is
forthcoming along this line has been confirmed (see Mongin (1998) and Cham-
bers and Hayashi (2006)). We do not explore the solutions any further and
defer to another paper explaining how our separability theory could contribute
to them.23

Theorem 1 also relates to Harsanyi’s (1955) Aggregation Theorem. Accord-
ing to this classic result, if the individuals have vNM preferences on a lottery set,
and if the social observer satisfies the Pareto principle and himself entertains
vNM preferences on the lottery set, then his preferences can be represented by
a positively weighted sum of the vNM representations of the individual prefer-
ences. Harsanyi boldly claimed utilitarian relevance for this piece of reasoning.
Our framework does not contain lotteries, so in order to bridge the gap with
Harsanyi, we should replace his theorem by one of the variants that were de-
vised for state-contingent prospects instead of lotteries.24 When this is done,
Theorem 1 appears to be a stronger form of the classic result: expected utility
theory now belongs to the conclusions, and the utilitarian-looking social welfare
functions follow from much weaker assumptions than before.

21An interesting recent option is objective Bayesianism (see Williamson, 2010)
22See the eloquent defence in Hammond (1983).
23Mongin and d’Aspremont (1998) review the solutions proposed at the time. Among the

more recent writers, Gilboa et al. (2004) and Keeney and Nau (2011) have taken up the
challenge.

24These variants make states of the world explicit and put identical subjective probabilities
on the individuals and the observer. One of them, by Mongin (1995), is stated for Savage
probabilities, and the other, by Blackorby et al. (1999), for probabilities on any finite set of
states.
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Some previous works have tampered with expected utility assumptions in
Harsanyi’s theorem, and they call for a comparison. The earliest, Blackorby
et al. (2004), takes a Cartesian product set of state-contingent prospects, ex-
pressed separability and monotonicity conditions similar to Row Preferences, Col-
umn Preferences, and Coordinate Monotonicity, although stated in utility terms
instead of preferences, and eventually derived an additively separable represen-
tation for social preference. At a closer look, this representation boils down to
expected utility, so that this early result is subsumed by Theorem 1 as a par-
ticular case. Not so for the theorem by Gajdos et al. (2008), which requires a
framework in the style of Anscombe and Aumann (1963). The individual and
social preferences there obey vNM independence and Savage’s sure-thing prin-
ciple on only a restricted set of alternatives, and they can be state-dependent.
Under an appropriate Pareto condition, the conclusion (2) of a unique subjective
probability emerges in more general form, and the social utility representation
is expressed as a weighted sum of the individual ones. Both because of its lot-
tery framework and residual expected utility assumptions, this result is closer to
Harsanyi’s than ours. Similarly with Fleurbaey’s (2009) theorem, which makes
full-fledged expected utility assumptions on the individuals, its contribution be-
ing to weaken those made on the social observer. This theorem, unlike the two
earlier ones, does not take a full domain of alternatives, but a convex set of
utility values, a particular case of our domain assumptions.

Application to intertemporal social preferences. With I representing
the individuals and J the time periods, Theorem 1 becomes a statement about
intertemporal social welfare. Row Preferences corresponds to the Pareto princi-
ple as applied to the individuals’ intertemporal preferences, Row Monotonicity to
individual time-dominance, Column Monotonicity to the Pareto principle as ap-
plied in a given time period, and Column Preferences to social time-dominance.
The conclusion about p can be strengthened by adding the conditions of Propo-
sition 2; it will then exactly mean that the individuals share the same discount
factor. As before, this may be interpreted as either a sheer impossibility or only
a severe restriction, and we lean towards the former view.

It remains to examine the case in which the four conditions introduced by this
section jointly apply. If X has both Identical Column Spaces and Identical Row
Spaces, there is a single open subset X ∗∗ such that X i

j = X ∗∗ for all (i, j) ∈ I×J .

Corollary 1 Suppose X ⊆ RI×J is open, connected, sectionally connected,
�-indifference connected, and has Identical Row Spaces and Identical Column
Spaces. Then � satisfies Continuity, Coordinate Monotonicity, Invariant Row
Preferences and Invariant Column Preferences if and only if there is an increas-
ing, continuous function u : X ∗∗ −→ R and strictly positive weight vectors
q = (qi)i∈I ∈ ∆I and p = (pj)j∈J ∈ ∆J such that:

(a) The order �
J

is represented by the function WJ : XJ −→ R defined by

WJ(x) :=
∑
i∈I

qi u(xi), for all x ∈ XJ .
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(b) The order �I is represented by the function W I : X I −→ R defined by

W I(x) :=
∑
j∈J

pj u(xj), for all x ∈ X I .

(c) The order � is represented by the function W : X −→ R defined by

W (X) :=
∑
j∈J

∑
i∈I

qi pj u(xij), for all X ∈ X .

(d) In this representation, the weight vectors q and p are unique, and the func-
tion u is unique up to a positive affine transformation.

Application to individual intertemporal choice under uncertainty. With
I representing a set of time periods and J a set of states of nature, an element
of X becomes an intertemporal, state-dependent prospect. Elements of X I

represent instantaneous prospects (which, by Identical Row Spaces, could be
realized at any moment in time), while elements of XJ represent ex post con-
sumption streams (which, by Identical Column Spaces, could be realized in any
state of nature). Invariant Row and Column Preferences mean, respectively, that
preferences are state-independent over ex post consumption streams, and time-
independent over instantaneous prospects. Adding the conditions of Proposition
2 to Corollary 1, we conclude that the individual’s preference is represented by
the expected value of a discounted utility sum.

An axiomatization of subjective probability for mixed uncertainty A
classic objection to Anscombe and Aumann (1963) is that they miss their target
— i.e., to provide non-probabilistic foundations of the use of the probability cal-
culus —since they postulate well-understood vNM lotteries to start with. The
equally classic rejoinder is that lotteries represent objective probability mea-
sures, whereas the endogeneous derived probability measure is subjective, and
that these are markedly different concepts. However, this is a somewhat dubious
response, because nothing in the framework justifies taking lotteries, and espe-
cially all possible ones, as if they were objective probabilities in a serious sense,
and even frequencies, as some have suggested. A reinterpretation of Corollary
1 suggests a way out of this controversy.

We now conceive of the Cartesian product set I × J as being the set of
states of nature. That is, we suppose that each state of nature is realized
after two uncertainties, here represented by I and J , are resolved. A matrix
X ∈ RI×J becomes a prospect that assigns a real-valued pay-off (say a monetary
prize) to each state (i, j) ∈ I × J . The preference relation � on prospects can
be restricted to a feasible subset X ⊆ RI×J , a generalization that standard
expected utility theories do not offer. Row Preferences and Column Preferences
now define preferences conditional the I- and J-attributes of a state, and they
make an eventwise dominance claim in either case. Coordinate Monotonicity adds
a statewise dominance claim with respect to the full states.
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The two specific axioms of this section, i.e., Invariant Row Preferences and
Invariant Column Preferences, play the decisive role. They express the fact that
the two sources of uncertainty are epistemically independent of each other in the
following sense: information about how one of them is resolved reveals nothing
about how the other would be.25 A semi-formal argument will explain this
connection. Suppose that ξ > ξ′, and that contrary to the desired property,
event i ∈ I tends to make event j ∈ J more likely to occur than event k ∈ J ,
whereas event h ∈ I has the opposite tendency of making k more likely to occur
than j. Now, consider X ∈ X such that xij = ξ, xhj = ξ′, xik = ξ′, xhk = ξ, and

Y ∈ X such that yij = ξ′, yhj = ξ, yik = ξ, xhk = ξ′, with X and Y sharing
their values elsewhere. By the axioms of the previous pararaph, conditional
preferences are well-defined and increasing, so that xi �i yi and xh �h yh,
contradicting Invariant Row Preferences since xh = yi and yh = xi. Similarly, if
j ∈ J makes i ∈ I more probable than h ∈ I, while k ∈ J has the opposite effect
of making h more probable than i, a contradiction results for Invariant Column
Preferences. Thus, if the two invariance conditions hold, the assumed violations
of independence will not occur. This suggests that the conditions do capture
independence in the saught after sense.

We assume Identical Row Spaces and Identical Column Spaces, but this is
only for technical simplicity.

Let us now consider the weight vectors p and q in the conclusions of Corol-
lary 1. Given their role in WJ and W I , and their uniqueness property, they
express meaningful probabilities for each uncertainty. Moreover, their multi-
plicative occurrence in the formula

W (X) =
∑
j∈J

∑
i∈I

qi pj u(xij)

shows that the informal concept of independence has been turned into proba-
bilistic independence. Beside answering the problem of axiomatizing this nu-
merical concept in decision-theoretic terms, Corollary 1 connects with the initial
controversy about Anscombe and Aumann. One may retain their basic insight,
which is to derive the agent’s probabilities on subjectively uncertain states from
preference comparisons that involve a second uncertain phenomenon. But un-
like Anscombe and Aumann, we do not assume that the agent has vNM prefer-
ences with respect to this second phenomenon, or even assume that the second
phenomenon admits “objective” probabilities at all. It is enough to require
independence in the informal sense explained above.

4 Conclusion

The paper has developed a theory for ranking multiattribute alternatives that
relies on the earlier Debreu-Gorman apparatus of separability, but extends it in

25To parody Savage, suppose I am uncertain whether I will find fresh eggs on the market and
whether I have a bowl in my cupboard, or I am uncertain whether there will be a swimming
pool open and whether my tennis racket is good enough to play.
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several ways. Not only have we made this apparatus compatible with restricted
feasible sets, but we have turned its generic additively separable representations
into more expressive ones, which relate more closely to the aimed at applica-
tions. Those covered here are sufficient to illustrate the logical power of the
theory, but others will be developed elsewhere for their own sake. Even in the
field of normative economics, where the theory originates and has its currently
major application, there seems to be more room for concrete work. We may put
GDP time-series, income or wealth distributions, or systems of interpersonal
utility comparison into suitable matrix forms, and then check whether or not
our domain restrictions and axiomatic conditions meaningfully apply. Some of
these cases might raise loss of dimensionality problems, and not all them will
accommodate the special invariant preference and identical spaces axioms that
enhanced our treatment, so the forthcoming applications are likely to range all
the way down from the generic additive separability result à la Debreu-Gorman
in Section 2 to the specific ones in Section 3. The theory as such deserves to be
developed beyond the case of two attributes, and it would have to be generalized
to the case in which the components of the matrices - or the higher-dimensional
arrays - are not real numbers.

Appendix: Proofs

Proof of Lemma 1. Clearly, Row Monotonicity or Column Monotonicity imply
Coordinate Monotonicity. We show the nontrivial converse. Suppose X is con-
vex, and satisfies Coordinate Monotonicity; we will show that it satisfies Column
Monotonicity. Let j ∈ J and i ∈ I, and let x,y ∈ Xj . Suppose xh = yh for all
h ∈ J \ {i}; we must show that x �j y if and only if xi ≥ yi.

Case 1. First suppose X is a box. Then we can find X̃, Ỹ ∈ X such that
x̃j = x and ỹj = y, while ỹk = x̃k for all k ∈ J \ {j}. Thus, we have:

(x �j y) ⇐⇒
(
X̃ � Ỹ

)
⇐⇒

(
x̃ij ≥ ỹij

)
⇐⇒

(
xi ≥ yi

)
,

as desired, by applying first Column Preferences, then Coordinate Monotonicity,
and finally the definition of X̃ and Ỹ.

Case 2. Now let X be any open convex set. Then the coordinate projection
Xj is also open and convex, so the line segment K between x and y is in Xj .
For each z ∈ K, we can find an open box Bz ⊆ Xj that contains z, and an open

box B̃z ⊆ X that projects onto Bz. Apply the argument from Case 1 to B̃z
to show that �j satisfies Column Monotonicity when restricted to Bz. Since K
is compact, it can be covered with a finite collection of boxes like Bz, and �j

satisfies Column Monotonicity on each one. An inductive argument leads one to
conclude that x �j y if and only if xi ≥ yi.

The proof of Row Monotonicity is similar, only using Row Preferences instead
of Column Preferences.�
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Proof of Example (a) just above Proposition 1. Without loss of generality, we can

take X = (0, 1)
I×J

. Fix X ∈ X , letting Y := {Y ∈ X ; Y ≈ X}. GivenY1,Y2 ∈
Y, we must find a path in Y connectingY1 to Y2.

Define 1 ∈ RI×J by setting 1i
j := 1 for all i ∈ I and j ∈ J . By Continuity and

Coordinate Monotonicity, there exists r1 ∈ (0, 1) such that r1 1 ∈ Y. Let Z1 ⊂ X
be the open line segment from Y1 to 1. For all Z ∈ Z1, Coordinate Monotonicity
implies that Z � Y1. Again by Continuity and Coordinate Monotonicity, there
exists rZ ∈ (0, 1] such that rZ Z ∈ Y. The set K1 := {rZ Z; Z ∈ Z1} is a
continuous path in Y from Y1 to r1 1.

Likewise, a continuous path K2 can be found in Y from Y2 to r1 1. A path
in Y from Y1 to Y2 results from joining it to K1. �

The proof of Proposition 1 is based on the Debreu-Gorman theory of addi-
tive representations for separable preference orders, which requires some back-
ground. Let N be an indexing set (e.g., N = I × J), let Y be an open subset
of RN , and for all n ∈ N , let Yn be the projection of Y onto the n-th coor-
dinate. A preference order � on Y has a fully additive representation if there
exist functions un : Yn−→R, for all n ∈ N , such that if we define U : Y−→R
by

U(y) :=
∑
n∈N

un(yn),

then U represents �.
For any y ∈ Y, we say that � admits a fully additive representation near y

if there is an open neighbourhood Y ′ ⊆ Y around y, such that � admits a fully
additive representation when restricted to Y ′. We will use the following result.

Lemma A1 Let Y be an open, connected, sectionally connected subset of RN ,
and let � be a continuous, indifference-connected preference order on Y, which
is strictly increasing in every coordinate. If � admits a fully additive represen-
tation near every y ∈ Y, then � admits a fully additive representation on Y.
Furthermore, this global additive representation is unique up to a positive affine
transformation.

Proof. See Theorem 2.2 of Chateauneuf and Wakker (1993). �

Let J ⊆ N , and let K := N \ J . For any y ∈ Y, define yJ := [yj ]j∈J (an
element of RJ) and yK := [yk]k∈K (an element of RK). We say that � is J-
separable (or that J is a �-separable subset of N) if the following holds. For all
x,y,x′, y′ ∈ Y, if

xK = yK , xJ = x′J ,
x′K = y′K , and yJ = y′J ,

then (x � y) ⇐⇒ (x′ � y′). We say that � is totally separable if every subset
J ⊆ N is �-separable. A well-known result applies these concepts to the case
where Y is an open box.
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Lemma A2 If � is a continuous, totally separable preference order on an open
box B ⊆ RN , and � is increasing in every coordinate, then � has a fully additive
utility representation.

Proof. See Theorem 3 in Debreu (1960). �

Let J ⊆ N and K := N \ J . We say that J is strictly �-essential if, for any
y ∈ Y, there exist x,x′ ∈ Y such that xK = x′K = yK , but x � x′. (In words, it
is possible to create a strict preference by only manipulating the J coordinates,
while keeping the K coordinates fixed at any stipulated values.)

Lemma A3 Let � be a continuous preference order on an open box B ⊆ RN .
Let J,K ⊆ N be two �-separable subsets, such that J ∩K 6= ∅. Suppose that J ,
K, and J ∩K are all strictly �-essential. Then:

(a) J ∪K is �-separable.

(b) J ∩K is �-separable.

Proof. See Theorem 1 by Gorman (1968b) for the original result, Theorem 4.7
of Blackorby et al. (1978) for a restatement, and Theorem 11 and Proposition
16 of von Stengel (1993) for the most general treatment. �

Now, for any i ∈ I, define J i := {(i, j); j ∈ J}. We can write RI×J = RJ1 ×
RJ2 × · · · × RJn . For any j ∈ J , define Ij := {(i, j); i ∈ I}. Similarly, we can

write RI×J = RI1 × RI2 × · · · × RIm .

Lemma A4 As in Lemma A3, let � be a continuous preference order on an
open box B ⊆ RI×J . For all i ∈ I and j ∈ J , suppose the sets Ij and J i

are �-separable, and the set {(i, j)} is �-strictly essential. Then � is totally
separable.

Proof. Clearly, the union of two strictly � -essential subsets of I × J is strictly
essential. Since every singleton subset of I × J is strictly �-essential, it follows
that every subset of I × J is strictly �-essential.

To show from the assumptions that � is totally separable, consider the cases
of singleton and doubleton subsets of I ×J . Singletons {(i, j)} are intersections
of the �-separable subsets J i and Ij , hence �-separable by Lemma A3(b). A
slightly more roundabout application of Lemma A3 shows that doubletons are
�-separable. Finally, prove that any subset J ⊆ I × J is �-separable, by
induction on |J |, doubleton separability, and Lemma A3(a). (See also Corollary
to Theorem 3.7 in Keeney and Raiffa, 1976.) �

Remark. To show that doubletons are separable in the proof of Lemma A4,
we need |I| ≥ 2 and |J | ≥ 2. This is the key place in the proofs where this
assumption is necessary.

Proof of Proposition 1. (a) Given X ∈ X , there is an open box B of RI×Jsuch
that X ∈ B ⊆ X . We first show that if � is restricted to B, then it is J i-
separable for all i ∈ I. Let Y,Z, Y,Z ∈ B, and suppose that (a) yh = zh for

22



all h ∈ I \ {i}, (b) yi = yi, (c) yh = zh for all h ∈ I \ {i}, and (d) zi = zi.
Then

(Y � Z) ⇐⇒
(
yi �i zi

)
⇐⇒

(
yi �i zi

)
⇐⇒

(
Y � Z

)
,

showing that � is J i-separable. (The first equivalence is by (a) and Row Prefer-
ences, the second by (b) and (d), and the last one by (c) and Row Preferences.)
By a similar argument based on Column Preferences, if � is restricted to B, then
it is Ij-separable for all j ∈ J .
It remains to show that � has a fully additive representation on B. By Continu-
ity, � is continuous on B. Coordinate Monotonicity implies that every coordinate
is strictly essential. We have just shown that Ji and Ij are separable for all i and
j; thus Lemma A4 implies that � is totally separable on B. Finally, Lemma A2
and Coordinate Monotonicity yield an additive representation of � on B. This
proves part (a) with Y =B.

Proof of (b). This follows from part (a), along with Coordinate Monotonicity,
Continuity and Lemma A1.26 (Alternatively, we could have directly proved (b)
by applying Theorem 1 of Segal (1992).)

Proof of (d). Fix X ∈ X , and consider the section of X in the jth dimension
through X, as defined by:

Sj(X) := {Y ∈ X ; yk = xk, for all k ∈ J \ {j}}.

Let Xj(X) := {yj ; Y ∈ Sj(X)} ⊆ Xj . Column Preferences implies that �,
when restricted to Sj(X), is equivalent to �j on Xj(X). Thus, part (b) implies
that the order �j on Xj(X) is represented by the function UX

j defined by

UX
j (y) :=

a constant︷ ︸︸ ︷∑
k∈J\{j}

∑
i∈I

uik(xik) +
∑
i∈I

uij(y
i),

for all y ∈ Xj(X). Thus, the function Uj :=
∑

i∈I u
i
j(y

i) also represents �j on

Xj(X). This holds for all X ∈ X ; thus Uj represents �j on Xj =
⋃

X∈X

Xj(X).

Proof of (c). Similar to the proof of (d), only using Row Preferences instead
of Column Preferences. �

To prove Theorem 1, we must solve a Pexider functional equation on a general
domain. The solution is provided by the following result.

26This is the one place in the proof that makes use of sectional connectedness and indifference
connectedness.
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Lemma A5 Let N ≥ 1 be an integer, and let Y ⊆ RN be an open, connected
set. For all n ∈ [1 . . . N ], let Yn be the projection of Y onto the nth coordinate,

and let Y0 := {
∑N

n=1 yn; y ∈ Y}.27 For all n ∈ [0 . . . N ], let fn : Yn−→R
be functions, at least one of which is continuous, and suppose they satisfy the
Pexider equation:

f0

(
N∑

n=1

yn

)
=

n∑
n=1

fn(yn), for all y ∈ Y.

Then there exist (unique) constants a, b0, b1, b2, . . . , bN ∈ R such that b0 =∑N
n=1 bn, and such that, for all n ∈ [0 . . . N ], fn(y) = a y + bn for all y ∈ Yn.

Proof. See Theorem 1 and Corollary 2 in Radó and Baker (1987). �

Proof of Theorem 1. The “if” direction is obvious. We prove the “only if”
direction.

Proof of (a). This follows from adapting the representations in Proposition
1(d) to the fact that X now satisfies Identical Column Spaces and � now satisfies
Invariant Column Preferences. (Specifically, fix some j0 ∈ J , and for all i ∈ I,
and all x ∈ XJ , define ui(xi) := uij0(xi), and put WJ = Uj0 , where Uj0 is defined
by setting j = j0 in Proposition 1(d).)

To prove parts (b)-(d), fix some j0 ∈ J . For all i ∈ I, let ui := uij0 .

Claim 1: For any j ∈ J , there exist constants aj > 0 and bij ∈ R such that

uij(x
i) = aj u

i(xi) + bij for all x ∈ XJ and i ∈ I.
Proof. By Identical Column Spaces, XJ is the same as Xj for any j ∈ J , so it is
an open and connected set of RI by the usual properties of the projection map.
Let j ∈ J , and let Uj0 and Uj be as in Proposition 1(d). By Invariant Column
Preferences, both Uj0 and Uj , represent �

J
on XJ . Thus, there are continuous,

increasing transformations gj : R −→R such that Uj = gj ◦ Uj0 , or

∑
i∈I

uij(x
i) = gj

(∑
i∈I

uij0(xi)

)
, for all x ∈ XJ . (A1)

For simplicity, suppose I = {1, . . . , n}, so that XJ ⊆ Rn. The image set Z :=
{(u11(x1), . . . , un1 (xn)); x ∈ XJ} is also open and connected in Rn, because the
uij0 are continuous and increasing, hence open.28 If we make the change of

variables zi := uij0(xi) for all i ∈ I, then (A1) becomes the Pexider equation:

∑
i∈I

uij ◦ (uij0)−1(zi) = gj

(∑
i∈I

zi

)
, for all z ∈ Z.

27Thus, Y0,Y1, . . . ,YN are all open intervals in R.
28Any function φ from an open subset of R to R that is continuous and increasing is also

open. We will make repeated use of this property.
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Lemma A5 applied to Z yields constants aj and b1j , . . . , b
n
j ∈ R such that uij ◦

(ui1)−1(zi) = aj z
i + bij for all z ∈ Z and all i ∈ I, hence such that uij(x

i) =

aj u
i
j0

(xi) + bij for any x ∈ XJ . Finally, aj > 0 because uij and uij0 are both
increasing. ♦ Claim 1

Proof of (c). Let A :=
∑

j∈J aj and pj := aj/A for all j ∈ J , so that
p = (pj)j∈J is a strictly positive weight vector on J . Claim 1 implies that, for
all i ∈ I and j ∈ J , and all X ∈ X ,

uij(x
i
j) = Apj u

i(xij) + bij . (A2)

If we let U : X−→R be as in Proposition 1(a,b), and define B :=
∑

i∈I
∑

j∈J b
i
j ,

then for all X ∈ X ,

U(X) =
∑
i∈I

∑
j∈J

uij(x
i
j) = A ·

∑
i∈I

∑
j∈J

pj u
i(xij) +

∑
i∈I

∑
j∈J

bij

= A ·
∑
j∈J

pj

(∑
i∈I

ui(xij)

)
+B = A ·W (X) +B,

where W is defined as in equation (3). Thus, W is an increasing transform of
U , so it represents � on X .

Proof of (b). Let U i be as in Proposition 1(c). Then for all x ∈ X i,

U i(x) =
∑
j∈J

uij(xj) = A
∑
j∈J

pj u
i(xj) +

∑
j∈J

bij = AU i
p(x)+[a constant],

where the second equality is by (A2). Thus, U i
p represents �i.

Proof of (d). For all i ∈ I, let ũi : R−→R be a continuous and increasing
function, and let p̃ ∈ ∆J be a strictly positive weight vector. Suppose that �

J

is represented by the function W̃J : XJ−→R defined by

W̃J(x) :=
∑
i∈I

ũi(xi), for all x ∈ XJ .

and that � is also represented by the function W̃ : X−→R defined by

W̃ (X) :=
∑
j∈J

∑
i∈I

p̃j ũ
i(xij), for all X ∈ X .

Now,
∑

i∈I ũ
i(xi) = g(

∑
i∈I u

i(xi)) for some increasing and continuous trans-
formation g.29 Thus carrying the same functional equation argument as for

29If f and h are continuous real-valued functions on some connected subset B ⊆ R, and g
is an increasing real-valued function such that h = g ◦ f , then g is continuous on f(B). We
will make repeated use of this fact.
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Claim 1, we conclude that there are constants a > 0 and bi ∈ R (for all i ∈ I)
such that

ũi(xi) = a ui(xi) + bi, (A3)

for all i ∈ I and x ∈ XJ . Thus, the functions {ui}i∈I are unique up to a common
affine transformation, as was to be proved.

Meanwhile, the uniqueness part of Proposition 1(a) yields constants A > 0
and bij ∈ R, for all i ∈ I and j ∈ J , such that

p̃j ũ
i(xij) = Apju

i(xij) + bij , (A4)

for all X ∈ X , i ∈ I and j ∈ J . Fix some i0 ∈ I Let x ∈ X i0 . The set X i0

is open, and ui0 is continuous and increasing; thus, there exist some ε > 0 and
some y ∈ X i0 such that ui0(xj) − ui0(yj) = ε for all j ∈ J . But then, for all
j ∈ J ,

aεp̃j = ap̃j u
i0(xj)− a p̃j ui0(yj) = p̃j ũ

i0(xj)− p̃j ũi0(yj) (by Eq.(A3))

= Apj u
i0(xj)−Apj ui0(yj) = Aεpj , (by Eq.(A4)).

It follows that a εp̃ = Aεp, and thus A = a, since p and p̃ are weight vectors.
Thus, p = p̃, which completes the proof of (d). �

Proof of Proposition 2. (a) Let W : X −→ R be the additive representation from
Theorem 1(c). By hypothesis, for all j ∈ {1, . . . , t−1}, there is some X ∈ X
such that xj �J xj+1 and X � σj(X), so that W (X) > W [σj(X)]. Cancelling
the common summands from both of this inequality yields

pj WJ(xj) + pj+1WJ(xj+1) > pj WJ(xj+1) + pj+1WJ(xj).

Rearranging this inequality, we obtain

(pj − pj+1) · [WJ(xj)−WJ(xj+1)] > 0.

But xj �J xj+1, so WJ(xj) > WJ(xj+1). Thus, we must have pj > pj+1, as
desired.

(b) Theorem 1 implies that �L on XL and �R on XR have the additive rep-
resentations:

WL(X) =

t−1∑
j=1

∑
i∈I

pj u
i(xij) and

WR(X) =

t∑
j=2

∑
i∈I

pj u
i(xij).

On XL ∩ XR 6= ∅, WL and WR represent the same order (by Stationarity). This
intersection is open in R|I|×(t−1) (as XL and XR are open), and a standard
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uniqueness theorem for additive representations entails that WL and WR are
identical up to a positive affine transformation. Thus, there is δ > 0 such that
(p2, . . . , pt) = δ · (p1, . . . , pt−1). Now, repeating the argument of part (a) for the
given j, we have that pj > pj+1, hence δ < 1. �

Proof of Corollary 1. Again, we prove the “only if” direction. Theorem 1(c) says
that � is represented by the function W : X−→R defined by equation (3). Now,
by the variant of this theorem using Invariant Row Preferences and Identical Row
Spaces, there is a weight vector q = (qi)i∈I in∆I , and, for all j ∈ J , there is an
increasing, continuous function vj : X ∗j−→R, such that �I is represented by

the function W I : X−→ R defined by

W I(x) :=
∑
j∈J

vj(xj), for all x ∈ X I , (A5)

while � is represented by the function W̃ : X −→R defined by

W̃ (X) :=
∑
j∈J

∑
i∈I

qi vj(x
i
j), for all X ∈ X . (A6)

Now fix x0 ∈ X ∗∗ . By Theorem 1(d) and its variant, we can subtract relevant
constants from the functions {vj}j∈J and {ui}i∈I , to ensure that

vj(x0) = 0 for all j ∈ J , and ui(x0) = 0 for all i ∈ I. (A7)

Since � is represented by both W and W̃ , there is some continuous, increas-
ing function f : R−→ R such that:

f

∑
j∈J

∑
i∈I

pj u
i(xij)

 =
∑
j∈J

∑
i∈I

qi vj(x
i
j), for all X ∈ X . (A8)

For all i ∈ I and j ∈ J , define gij(ζ) := qi vj ◦ (ui)−1(ζ/pj) for all ζ ∈ R where

this definition makes sense. Define Ξ := {[pjui(xij)]i∈Ij∈J ; X ∈ X}, an open,

connected subset of RI×J . Then substituting ξij := pju
i(xij) into both sides of

equation (A8) yields

f

∑
j∈J

∑
i∈I

ξij

 =
∑
j∈J

∑
i∈I

gij(ξ
i
j), for all ξ ∈ Ξ.

Now Lemma A5 implies that there exists a constant a > 0 such that f(ζ) =
a ζ = gij(ζ) for all i ∈ I and j ∈ J . (Equation (A7) implies that the added
constants of Lemma A5 are all 0.) By rescaling {vj}j∈J if necessary, we can
assume that a = 1; hence gij(ζ) = ζ. But gij(ζ) = qi vj ◦ (ui)−1(ζ/pj), so this

implies that pj u
i = qi vj , for all (i, j) ∈ I×J . Dividing these equations by qi pj

(which are nonzero), we obtain

ui/qi = vj/p
j , for all (i, j) ∈ I × J.
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It follows that there is a single increasing continuous function u : X ∗∗ −→ R such
that

(a) ui/qi = u for all i ∈ I and (b) vj/pj = u for all j ∈ J . (A9)

Substituting equation (A9)(a) into equation (1) yields part (a) of the result.
Substituting (A9)(b) into (A5) yields part (b), while substituting (A9)(b) into
(A6) yields part (c). Part (d) is straightforward. �
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